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ABSTRACT:  In harsh environments such as space, radiation and charged particles cause Single-Event Effects, faults 
occurring randomly on any electronic component. These must be mitigated to ensure device functionality. Modern 
mitigation methods, such as triple modular redundancy, are very effective against Single- Event Transient 
s(SETs),butincuraminimumof3×cost in area. Single-Event Upsets (SEUs) affect sequential elements and are regularly 
repaired using memory scrubbing. Scrubbing is a slow serial process, going through every memory word looking for 
errors to repair. It involves a non-negligible Time To Detect (TTD) before repair, during which other events can occur 
and compromise the system. Field Programmable Gate Arrays (FPGAs)rely heavily on sequential elements to store 
their config- uration; thus, FPGA’s SEU detection time is critical to ensuring design integrity in harsh conditions. In 
this paper, we propose In- Memory Error Code Correction Checking (IMECCC),a method to replace memory scrubbing 
and improve FPGA configuration memory protection in high radiation environments. Our method allows asynchronous 
SEU detection, and replaces the scrubbing’s variable time to detect with a fixed TTD. We show that IMECCC reduces 
FPGA’s TTD by at least 116,000× on average, with an area increase of 1.56×, using a test architecture resembling a 
Xilinx Virtex 5 QV at a 60MHz scrubbing frequency. 
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I. INTRODUCTION 
 
FIELD-PROGRAMMABLE Gate  Array’s(FPGA) reconfigurability is an asset; it allows the modification of an 
implemented design, such as an upgrade or repair through routing and synthesis modification. This reconfigurable 
prop- erty is even more crucial in harsh environments like space, where radiation and ionizing particles increase 
potential for failure, and human maintenance is impossible or time- dependant. Indeed, some failures can be critical, 
causing damage to the hardware. used to restore the functionality of the device through recon- figuration; this is known 
as a fail soft capability. However, the Configuration Random Access Memories (CRAMs) that provide the fail soft 
capability are also vulnerable to events such as Single-Event Upset (SEU) and need to be protected and repaired to 
avoid unexpected FPGA behavior. 

State-of-the-art Radiation-Hardened(Rad-Hard)parts, such as the Xilinx Virtex 5 QV [1] recently used in the NASA 
Per- severance Mars Rover, embed a combination of three methods to increase FPGA reliability. The first way to 
mitigate Single- Event Effects (SEEs) is physical hardening, such as replacing Static Random Access Memory (SRAM) 
with Dual Inter- locked Storage Cell (DICE-cell) and replacing conventional latches with Radiation-Hardened-By-

Design (RHBD) ones [2], [3], [4]. The second method is physical redundancy, com- monly Triple Modular 

Redundancy (TMR), which triplicates the implemented design to decrease the likelihood of error via majority 
voting[5].Bitstream-scrubbing is the last of the mitigation methods, and entails serially traversing the CRAM words 
looking for SEU-induced errors to repair [6]. Scrubbing’s serial nature induces a non-constant Time To Detect (TTD) 
because of the SEE’s randomness during the serial verification process. It is possible for more than one SEU to occur 
before bitstream repair, creating a failure inspite of the redundancy and leading to erroneous behavior. Thus, reducing 
an FPGA’s TTD after an SEU is critical. 

 
In this paper, we introduce In-Memory Error Correction Code Checking (IMECCC), an interruption-based bitstream 
repair method that may be used in place of bitstream-scrubbing to reduce the FPGA TTD significantly. Our work 
presents a new FPGA architecture which asynchronously detects SEUs with a sensor network, and integrates Error 
Correction Code (ECC) checkers on every CRAM word. In the event of an SEU, a sensor triggers CRAM repair for its 
associated word. Compared to serial memory-scrubbing, IMECCC reduces the probability of an error being 
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compounded by a second SEU. Our work also shows a reworked configuration process that integrates ECC parity bits 
at the system level to avoid errors during the programming phase. Our method’s approach has several benefits 
compared to commercial FPGAs. We demon- 
strate a TTD reduction of at least 116,000× on average compared to a reference architecture resembling a Xilinx 

Virtex 5 QV at a cost of an area increase of 1.56× at the 
Configurable Logic Block(CLB)level compared to a similar 
XilinxVirtex5QV. 
 
The rest of this paper is organized as follows: Section II provides technical background on SEE, mitigation methods, 
and FPGA customization; Section III details the IMECCC 
 

     
 

      

 

Fig.1.IllustrationofSEUperbitperdayatdifferentaltitudesfrom[7].design methodology, from the CRAM-cell design, to 
the self- protected extra hardware; Section IV develops the experimen- tal methodology and results; and Sections V 
and VI discuss the results and conclude. 
 

II. RADIATION EFFECTS AND MITIGATION FOR FPGAS 
 

This section briefly introduces the SEE s’ impact on FPGA behavior and highlights the need for mitigation method 
imple- mentation. Then, short presentations of state-of-the-art meth- ods are provided including both soft and hard 
integration techniques. This section concludes with an introduction to state-of-the-art Rad-Hard FPGA architecture. 
 
A. Single-Events in FPGA 

SEEs are radiation and ionizing particle-induced events, primarily present in harsh environments. Their main char- 
acteristics are: the Linear Energy Transfer (LET) as the amount of MeV-cm2/mg transferred from the particle to the 
device, and the cross-section as the area of effect. SEEs have many sub-categories including SEUs and Single-Event 

Transients (SETs).Although their frequency can be estimated, as illustrated in Fig.1with the relation between altitude 
and SEU per bit per day[7],any given event’s location and trigger time cannot be accurately predicted. An SEU may 
affect any sequential element in a design and flip the stored value. There are three types of SEU, as illustrated 
byFig.2:(1)Single Bit Upset(SBU)when only one memory bit is flipped, 
(2)Multiple Bit Upset(MBU)when more than one memory bit is flipped in the same memory word [8], [9], and (3) 
Multiple Cell Upset (MCU) when more than one memory bit is flipped among two or more memory words [9]. SEUs 
are persistent errors and a considerable threat to FPGA design integrity; this is because CRAM cells are distributed 
throughout the FPGA area, and any alteration may lead to a design modification, such as a changed logic function or 
unexpected signal routing. SEUs will persist unless corrected; therefore, they require the implementation of a correcting 
system. SETs differ from SEUs in terms of error duration. SETs are temporary; the system restores itself to the 
original state when the event is passed. An SET duration mostly depends on the LET [10]. Moreover, SETs may affect 
any transist or in the design, generating analog variation leading to possible undetermined or unexpected logic states. 
SETs threaten FPGA functionality with effects such as signal alteration, unexpected set or reset, or early clock 
triggering. 
 
B. State-of-the-Art FPGA Mitigation Methods 

This section briefly introduces the state-of-the-art mitigation methods, starting with the hardware implementation in 
physical hardening. Then, the soft solutions are presented in the TMR and bitstream scrubbing sub- sections. 
Fig.2.IllustrationofSEU’simpact on two adjacent memory words where 
(0) is the initial state,(1)shows an SBU,(2)shows a 2-bit MBU, and(3)shows a 3-bit MCU composed of a 2-bit MBU 
and an SBU. 
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Fig. 3. Block diagram of TM Red design. The same function is implemented in LUT_0, LUT_1, and LUT_2, and the 

outputs are submitted to voters, transmitting the majority value to the remaining of the design. 
 

1) Physical Hardening: The first level of physical hard- ening is technology selection. Previous work has shown 
that a fully depleted silicon on insulator Static Random Access 

Memory (SRAM) is 6× more resistant to SEU than a bulk SRAM [11].The second level of physical hardening is 
RHBD. State-of-the-art Rad-Hard FPGAs implement RHBD latches 
as CRAM [1]. RHBD latches can be either topologically different from standard latches or redesigned to break the 
cross-coupling between internal inverters [4]. SRAM, which are also ubiquitous in modern FPGAs, can be hardened 
the same way with DICE-cells [2]. RHBD techniques incur an area overhead due to the larger size of RHBD cells 
compared to non-hardened cells. 
2) Triple Modular Redundancy: TMR is a very popular mitigation method that can be applied either at the system 
or design level. At the design level, TMR consists of design segmentation and the triplication of those segments; the 
correct behavior for each output is determined by voters, as illustrated by Fig. 3. TMR protects the design from SETs 
and, in an FPGA, TMR delays the impact of SEUs on the CRAM [5]. Thus, TMR protects the design from CRAM bit-
flip until it is repaired or until another SEU happens on a redundant part of the design and makes it faulty. TMR’s 
protection comes 
with a high cost in FPGA utilization: 3× the original design, plus the voters. However, TMR does not have to be 
applied 
to a complete design and could be partially applied to only the most critical parts to reduce the utilization overhead [12]. 
Other works replace TMR with sensor-based dual redundancy to reduce FPGA logic utilization [13]. 
3) Bitstream Scrubbing: Bitstream scrubbing is a repair method to recover the initial CRAM value after SEUs. 
Broadly, there are two scrubbing techniques in use [5]. The first and most simple is blind-scrubbing. A read-only 
memory or very radiation-resistant memory such as flash is embedded at the system level; the bitstream is continuously 
rewritten from the rad-hard memory. The second method is the most common and is called readback-scrubbing. It 
requires several modifications compared to blind-scrubbing: (1) ECC code integration to protect CRAM words against 
a defined number 

of modifications,(2)ECC checker integration to interpret the ECC status and trigger partial reconfiguration if needed, 
(3) address counters to load the ECC checker with different CRAM words, and(4)logic around the ECC checker to 
trigger CRAM reconfiguration hardware. Read back-scrubbing goes through the bitstream, retrieves the data, checks 
the integrity with the ECC checker, and repairs the bitstream if necessary. This process takes time and implies a non-
constant TTD, often reported as Mean TTD (MTTD). Some recent works replace the counters with prioritization and 
specific algorithms or use high-speed ports to reduce the impact of SEUs [14], [15]. Furthermore, readback-
scrubbing relies on the implemented ECC. The Hamming code is mainly used and requires parity bit generation and 
integration, as illustrated in equation 1.The Hamming code is Single Error Correction Double Error 

Detection(SECDED)[16];itcanbedefeatedby3-bitormore errors, whose likeliness have recently been studied [17]. 

#parity_ bits=log2(#data_ bits)+1 (1) 

4) Other Methods: Previous works have presented alterna- tives and improved solutions to readback scrubbing 
through detecting redundancies that trigger scrubbing on a defined portion of the bitstream or even decode the frame 
address [18], [19], [20]. As the bitstream scrubbing optimization introduced in the previous section, these solutions are 
architecture-,design-,and application-dependent. The application dependence refers to the probability for each CRAM 
bit to be involved and its bit flip detected. Therefore, the detection does not correlate directly with the time an event 
happens but with the time the affected bit would be used. Thus, such methods are not considered in this study. 
 
C. State-of-the-Art FPGA Architecture 

An FPGA is characterized as Rad-Hard when it includes some implementable or built-in mitigation methods, such as 
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those previously introduced, and passes irradiation tests, such as faster error recovery than particle rate or the Mil-PRF- 
38535 qualification. However, the architecture can vary, and in some cases, implementation details can present their 
own weaknesses. For example, the Xilinx Virtex 5 QV includes a SECDED ECC per configuration frame and RHBD 
latches as CRAM [21].A frame contains 1,312 bits divided into 41 mem- ory words. Such an organization minimizes 
the area overhead induced by the ECC bits but exposes the FPGA to potential simultaneous events. Therefore, physical 
hardening and risk assessment are required before utilizing such FPGAs in harsh environments. An alternative consists 
of integrating ECC bits in every CRAM word to reduce the ECC’s probability of being defeated. However, it implies a 
larger area-overhead than the frame solution. Both the frame and word solution are used as references in this work. 
 

III. IMECCC FPGA ARCHITECTURE 

State-of-the-art Rad-Hard FPGAs mainly rely on readback bitstream scrubbing to detect CRAM’s SEU, which can take 
several microseconds. Such detection times are systems’ lia- bility and limit the utilization of FPGAs for critical appli- 
cations. This work proposes a new FPGA architecture and  

 
Fig. 4. IMECCC CLB block diagram illustrating the loading of CRAM words containing the ECC parity bits and the 

replacement of scrubbing with an interruption-based process. 
 

 
 

    

Fig. 5.Illustration of IMECCC CRAM word organizations with intertwined Hamming parity bits. A 32 bits CRAM 
word is composed of 26 bits of dataand 6 bits of parity. 
 
design methodology to replace bitstream scrubbing with asyn- chronous SEU detection to reduce systems’ liability. Our 
main contributions are ECC and detection time improvements. They are obtained via ECC checkers integrated as SEU 
sensors with a specific floor plan which increases the ECC error coverage. This section describes the design 
methodology to integrate our architecture on a fabric comparable to a Xilinx Virtex 5 QV, using the Google-Skywater 
130nm Process Design Kit (PDK) as proof of concept. We first discuss the ECC implementation and its impact. Then, 
we present a memory design variation that eases the physical design and avoids any risk of unde- tected error. We then 
develop the use of these CRAM cells for in-memory ECC checking: how to floor plan these new CRAMs and use the 
ECC checking as a sensor to detect SEUs. Next we develop SEU sensing as a replacement for bitstream scrubbing 
offering more efficient protection. Finally we conclude this section with a self-protection analysis of the newly 
introduced hardware. A high-level introduction of the proposed work is illustrated by the block diagram in Fig. 4. 
 
A. ECC Parity Generation and Coverage 

The IMECCC architecture uses a Single Error Correction Double Error Detection (SEC-DED) Hamming code, also 
used in the reference FPGA. Previous work showed that SEUs could affect more than two bits[9],[17],and this concern 
is addressed in section III-C. In our architecture, we have 
26 bits of configuration data (D)and 6 parity bits(P)in order to fit the 32 bit configuration word (B), as shown in Fig. 5 
and according to equation 1. In our work, configuration data are protected when loaded to the FPGA and can be 
directly repaired if an event occurs. This CRAM organization differs from existing devices, which have 12 parity bits 
(P) for 1,280 bits of configuration data (D), corresponding to the frames introduced in Section II-C. The proposed 
design use the Hamming equations to protect every configuration data bit with at least two parity bits, as shown in 
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equations 2-6. 

X7 

P [1]= B[4×n+2]⊕B[4×n+1] (2) 

n=1 

 
 

Fig.6. Illustrationofmemorydecoderscontrolledbysystem-
levelsignalsprog_enandaddr_induringprogrammingphase(a)andmemorydecoderre- 
utilizationbytheinterruptmanagersinrepairphase(b).Both(a)and(b)aresequencedatprog_clkfrequency. 
 

P[2]=⊕{B[30:27],B[22:19],B[14:11],B[6:4]}(3) P[3]=⊕{B[30:23],B[14:8]} (4) 

P[4]=⊕B[30:16] (5) 

P[5]=⊕B[30:0] (6) 

B. Word-Based CRAM Access 

SRAM-based FPGAs use latches as CRAM. Configuration can be loaded into the CRAM through many protocols, 
either serial or parallel. In this work, we use a word-accessible protocol that can reach every CRAM word from its 
unique address. This kind of BRAM-like organization is very useful for scrubbing and reconfiguration, easily reaching 
a memory word by its address and existing decoders. Indeed, as illus- tratedbyFig.6,the memory decoders are 
controlled at the system level during the programming phase and in by the interrupt managers described in Section III-
D during the operating phase. More importantly, in the case of a SET happening on a clock signal, memories are not 
altered as long as the “write enable” signal is not set. 
 
C. In-Memory ECC Checking 

State-of-the-art Rad-Hard FPGAs rely on Place and Route (PnR) tools to automatically and efficiently distribute the 
CRAMs when designing the architecture. Thus, to minimize the risk for the Hamming code to be defeated, either the 
CRAM cells have to be as SEU resistant as possible to minimize the risk of ECC failure, or the integrated ECC has to 
be very resilient. Our work uses a specific floor plan illustrated in Fig. 7. This floor plan enables very fast SEU 
detection and reinforces ECC resilience by forcing MBU to be only Double Bit Error (DBE). 
1) SEU Detection: In commercial FPGAs, SEU detectionis mostly done by readback bitstream scrubbing. 
However, read- ing back the FPGA configuration looking for errors inevitably delays SEU detection. Indeed, it is very 
unlikely that SEUs will only happen at the next scrubbing addresses. State-of-the- art mitigation methods reduce this 
weakness with a com- bination of scrubbing and TMR, as mentioned in section II. Our work proposes an alternative to 
readback-scrubbing to combine with existing redundancy methods, such as TMR. We increase the quantity of ECC 
checkers to integrate one 
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TABLEI 

SEU TYPE AND LOCALIZATION FROM ECC CHECKER VALUES 
 

   
  
  
  
  

 
 
ECC   checker per memory word. These ECC checkers are used as sensors to detect SEUs asynchronously. The ECC 
checkers are similar to those implemented in state-of-the-art FPGAs, following typical equations for the reference 
design and the proposed work. From the value of the ECC signal, both designs can determine the type of error and 
eventually the error location following the truth table illustrated in Table 
I. One difference between the designs comes from equation 7used by our work to trigger the reconfiguration as 
explained in section III-D. 
 
flag=|ECC (7) 

2) ECC Error Coverage Improvement: Improvement in the Hamming ECC error coverage is made possible by 
utilizing many ECC checkers as all or nothing sensors. Previous experimental work on MBU and MCU in BRAM 
showed that the majority of SEUs create SBU; two and three-bit errors are common enough to be considered, but 
alterations of four bits or more bits are very unlikely [9], [17]. A previous study showed SET duration and SEE cross-
section increase as technology scales down, reaching upto1.56µm2 at 100MeV- cm2/mg LET for a 130nm technology 
node [10]. From these works and the dimensions of our CRAM, we defined an effective diameter of 6µm around a 
particle impactlocationtocoverLETupto1.8GeV-cm2/mg and all potential trajectories. Then we created a memory word 
floor plan with a repeated pattern that ensures no more than two CRAM cells from the same word share any given 6µm 
space illustrated in Fig. 7. From this figure, we can see that ECC checkers are intertwined with CRAM cells. SEEs are 
represented with circles of diameter up to 6µm to illustrate SBU, MBU, and MCU. This figure also demonstrates that 
despite the Hamming code allowing only SEC-DED, our work reinforces the error coverage by preventing 3-bit MBUs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.7. Representation of a Logic Element with In-Memory ECC Checking floor plan. It highlights the safes pacing of 
CRAM’s cells and words with less than three CRAM cells in a 6µm diameter. The spacing is re-used for ECC checkers 

and logic integration. This figure also shows examples of SEE that can impact the CRAM. 
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D. Interruption-Based Reconfiguration 

Previous sections introduced the elements to enable the new interruption-based partial reconfiguration. This section 
presents the behavior of the interruption triggered by our solution. As this paper focuses on the detection time reduction 
through FPGA fabric customization, we intentionally avoid any reference to reconfiguration circuitry to preserve the 
FPGA designer repair time needs and customization possibilities, such as using existing self-repair methods or new 
ones in as many reconfigurable regions he wants, either internal or external to the FPGA. The combination of 
Hamming ECC code and IMECCC considerably reduces the risk of ECC failure. More importantly, IMECCC 
asynchronously detects SEUs in memory by creating a sensor for every memory word. These SEU sensors raise the 
“flag” signal from equation 7to trigger the interrupt manager in Fig. 4and 6(b). The interrupt manager contains a 3-bit 
counter for each CRAM word and prioritizes the memory words to repair and transfer to the bit stream reconfigurator. 
The counter’s MSB is used as a time- out to prevent a destructive event or a Single Event Latch-up from freezing the 
entire system’s reconfiguration capability. In the case of two or more SEUs happening in a very short period at 
different locations in the FPGA, the affected memory words are repaired one after the other. Interruption- based partial 
reconfiguration can repair the same memory word many times consecutively in the case of many SEUs affecting this 
same memory word, increasing the reliability of the proposed work over the current state-of-the- art. Interruption- 
based and scrubbing-based partial reconfiguration share the same reconfiguration process as illustrated by the flow 
chart in Fig. 8. This figure highlights in yellow the limitation of Hamming-based reconfiguration and the cost of 
double-error detection, which requires system intervention to repair the affected memory word. 

E. Self-Protected Hardware 

Although IMECCC provides protection against SEEs, it does so by introducing new hardware, which itself may be 

 
 

                                          

Fig.8.Flow- chart presenting the reconfiguration difference between (a) read- 
-back scrubbing and (b) the proposed work, as well as the internal or external location of the involved elements. 

subject to SEEs. In this section, we explain how the sensors and interrupt manager are self-protected from SEUs and 
SETs. 

1) Sensors: The sensors are composed of combinational gates; thus, they have total immunity to SEUs. Although 
ECC checkers are not TMRed, SETs do not threaten the system’s behavior. Indeed, a SET happening on the sensor’s 
logic will trigger an interruption for the event duration at most. In the case of a long duration SET, two cases are 
possible: (1) the SET affects ECC signals involved in ECC [4:0], creating a false DBE detection and reprogramming 
this memory word by loading the correct value from the system-level until the SET ends, as shown in Fig.9.Or,(2)the 
SET also affects the fifth bit of the ECC signal, and falsely targets a bit of the memory word for reprogramming until 
the SET ends. Then the last reconfiguration ensures the correct value is restored. SETs can also affect the logic gates 
generating the “flag” signal. Then, two behaviors are possible:(1) a gate computing 
 
2) Interrupt Managers: The interrupt managers are not immune to SEU because of the embedded counters for 
timeout 
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Fig.11. Simplified CLB schematic view showing the inter connection between all the presented modules with a zoom 
inside an LE. 

 
Fig.9.Schematic of implemented logic for the flag and error_ type signals. Purple gates are potential causes of DBE 
detection caused by SET, as defined in case (1). SET on the yellow gate causes false detection without reconfiguration, 
as in case (2). 
 

 

 

Fig.10.Interrupt manager block diagram to identify SEUs and SETs target. Purple blocks are impacting repair priorities because of 
SEU and SET, as defined in cases (1) and (2). SEU/SET on the yellow elements has no impact on forced to ‘0’ counters, as in case 

(3). The blue multiplexer named case (4) shows how memory bits can be incorrectly transmitted. 
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mentioned in section III-D. SEUs can occur on the interrupt managers in three different ways, as depictedinFig.10: 
(1) It increases the counter value and indirectly the associated element priority. Eventually, it triggers a system 
notification of hardware potentially altered; (2) It decreases the counter value and the associated element priority. 
System notification is also delayed; Or (3) the SEU happens on an element’s counter which is not already in error. 
Counter’s value is forced to ‘0,’ and the event acts as a SET. SETs can happen on the multiplexers carrying the 
signal from a memory word to the reconfigurator. As for the sensor error, it leads to reconfiguration during the event 
and a correction once the event is over. However, this case only happens if a SET hits 

LEs (k6N8 architecture) and are designed in a hierarchical flow floor planed as illustrated in Fig. 11. 
 
A. Methodology 

We used Open FPGA to generate the reference designs and our work on IMECCC [22]. Open FPGA is an open-source 
FPGA prototyping tool that takes an XML description of the architecture to implement and the associated cells from a 
PDK as input to generate the equivalent net lists ready for physical design in a semi-custom flow. In this work, it was 
used with an architecture resembling a Xilinx Virtex 5 QV adapted to the Google-Sky water 130nm PDK to generate 

the reference designs (Refframe and Refword). The CRAM cells are imple- mented as non-hardened latches. The 

configuration CRAM organizations are respectively frame-based for Refframe and word-based for Refword. Our work 

(IMECCCCLB) is a mod- ified version of Refword. It includes net list modification and specific floor planning of the 
IMECCC CRAM, as described in section III. Every module added to the net lists was synthe- sized, and technology 
mapped using Synopsys Design Com- piler. Functional verification for each module was done with the Mentor 
Graphics Questa sim simulation tool and manual test benches. The physical design was realized using Synopsys ICC2. 
Experimental results provided in the next sections focus on 

the CLB area and TTD comparison. The area comparison was performed after physical design .Refframe TTD 

(MTTDframe) is determined as half the readback CRC scan time to emulate a gaussian distribution of SEUs[23]. 

Refword 

TTD (MTTDword) is calculated as an average based on the Xilinx Virtex 5 QV number of configuration frames — 
3,762 to63,024—at20%,40%,60%,and80%utilizationwith a scrubbing frequency of 60MHz, the Xilinx Virtex 5 
QV recommended scrubbing frequency [23]. MTTDword follows equation8. IMECCCCLB TTD(TTDIMECCC) is 
extracted post- layout using Synopsys Prime Time as the longest time for an IMECCC CRAM word to raise its error 
flag. 
   #word(frame)×utilization(design)  
an interrupt manager while a covered memory word is in the queue for reconfiguration.MTTD word  =

 

frequency (scrub_ clock)×2                                                                                                                        (8) 

V. EXPERIMENTALRESULTS 

 

This section focuses on comparing CLBs’ and Logic Ele- ments’(LEs) areas as well as SEU detection time between the 
proposed IMECCC architecture and reference designs with CRAM accessible by frame or word. All CLBs contain 
eight 

B. Area Comparison 

The physical design experiments showed areas of 84,441µm2, 85,201µm2, and 127,517µm2at CLB level for Refframe 

Refword and IMECCCCLB respectively. Such resultscauseanareaoverheadfromourworkof51%and 

   
Fig. 12.LE’s post-PnR views of: (a) Refframe, (b) Refword, and (c) IMECCCCLB. These views highlight the area 
overhead between the design caused by the CRAM organization. Refwordis 5% larger than Ref frame, while 
IMECCCCLB’s LE is56% and 49% bigger than Refframe and Refwordrespectively. 
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50% compared to Refframe and Refword. At LE level, block areas are 8,047µm2, 8,468µm2, and 12,582µm2 for 
Refframe Refword and our work respectively, as illustrated in Fig.12. At this level, the area overheads reach 56% 

compared to Refframe and 49% compared toRefword. Such overhead is explained by the extra hardware from the 
locally integrated ECC checkers and interrupt-managers. However, this CLB to CLB does not consider the required 
FPGA hardware utilization to implement readback-scrubbing for the reference designs. The scrubbing- related 
utilization depends on the implemented benchmark, the scrubbing frequency, and the algorithm used. Such 
considerations are discussed in section V. 
 
C. TTD Improvement 

State-of-the-art SEU mitigation methods for FPGAs have shown a limitation in detection time. Therefore, the 
IMECCC technique has been designed to detect SEUs faster than readback-scrubbing to minimize this weakness. 
Experiments demonstrated an IMECCC sensor’s TTD up to 2.16ns. In the meantime, calculations show that 
MTTDframe is between 1.27ms and 18.4ms depending on FPGA model[23].It implies a detection time reduced by a 
factor of 587,000× to 
8,518,000× for FPGA sizes similar to Xilinx Virtex 5 QV LX20T and LX330T respectively. The same FPGA sizes 
are used in the experiments comparing MTTDword with TTDIMECCC. As illustrated in TableII, IMECCC reduces 
SEU detection by 116,000× on average at the size of the LX20T 
and 20% utilization. Comparison with a Refword FPGA sized as 
the LX330T showed even larger improvement. 

As illustrated in Fig.13,IMECCC improvement exceeds  

TABLEII COMPARISIONBETWEENIMECCCCL B’STTDAND 
CALCULATEDMTTDwordFORANFPGASIZED SIMILARLYTOXILINXVIRTEX5QVLX20T 
 

  
    
    
    
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    

Fig. 13. Logarithmic bar graph showing the IMECCCTTD gain over MTTDword for scrubbing frequency between 
60MHz and 450MHz and logic utilization varying between 20% and 80% at Xilinx Virtex 5 QV LX330T size. 
 
56% increase in CLB’s area for a k6N8 architecture and32-bit CRAM words. Overall, the IMECCC SEU detection 
method provides an Area-Detection Product Improvement (ADPI), 

detailed in equation 9, between 78,146× and 3,022,381×. 
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area  (RefCLB)×MTTDRef  (Util.,Freq) 
 
1,000,000× for utilization over 20% at 60MHz scrubbing. Thus, we investigated how the performances would 
evolve,ADPI   = 

(IMECCC 
 

CLB)×TTD 

IMECCC  (9) 
 
we could scrub at frequencies up to 450MHz, which is Xilinx Virtex5QVmaximumoperatingfrequency[1].IMECCC 
remains 250,000× faster than scrubbing for an FPGA with 20% utilization scrubbed at 450MHZ. However, the MTTD 
does not represent the worst-case scenario for readback scrub- bing. Indeed, in the scrubbing worst-case, an SEU 
happens on the very last CRAM word to check. In such conditions, 

scrubbing has a TTD upto 9,700,000×slower than IMECCC. Furthermore, scrubbing’s SEU detection best-case, 
occurring 
on the next CRAM word to verify, remains 1.03×at 450MHz and up to 7.7× at 60MHz slower than our solution. The 
improvement from the IMECCC comes from an entire system 
modification compared to state-of-the-art FPGAs. Indeed, the sensor network asynchronously detects SEUs, while 
scrubbing is a clocked step-by-step “random” search. 
The IMECCC solution comes with a 2.16ns fixed TTD, 
significantly reducing the detection time by at least 116,000× compared to scrubbing’s MTTD. It also comes with an 
upto 

 
V. DISCUSSION 

 

The IMECCC solution presented in this paper is an uni- versal built-in detection technique, whose characteristics are 
summarized in Table III, that fundamentally differs from the implementable state-of-the-art solutions. Therefore, this 
solution comes with extra hardware to implement the sensors and manage interruptions and reprogramming compared 
to state-of-the-art FPGAs. For example, the interrupt-manager would use 150 LUT and 96 FF if implemented in 
reconfig- urable logic, which is comparable to the scrubbing methods mentioned in previous work [14]. This extra 
hardware, as well as the new approach, allows a significant gain in design implementation time. Indeed, IMECCC 
natively provides CRAM supervision and does not require modifications to implement the scrubbing algorithm. 
Nonetheless, the IMECCC area overhead does not increase the probability of error. Eventhough a larger area increases 

TABLEIII 

SUMMARY OF THE PARAMETERS OF INTEREST COMPARISON BETWEEN STATE-OF-THE-ART FPGA 
AND THE IMECCC PROPOSED SOLUTION 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

  

 
 

 
 

 
 

 
 

the likelihood of an SEE happening in a module, simulations have shown the hardware’s resilience to both SEUs and 
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SETs. Indeed, most of the side effects of events on the new elements lead to reloading a correct bitstream in to a non-
altered CRAM; otherwise, the side effects are neutralized in the absence of SEU affecting the configuration memory. 
Moreover, this work considers only the area increase in the CLBs; the overhead for the routing modules should be 
lower since their areas are less CRAM-dependent. Furthermore, it should be possible to improve utilization 
performance by exploring alternatives to TMR that interruption-based partial reconfiguration may enable. For example, 
recent work has demonstrated that full TMR may require too many resources for reliability improvement compared to 
Partial TMR (PTMR) [24]. Some other recent works, such as [13]and[25],have also shown that dual redundancy can 
save up to 33% utilization compared to TMR and PTMR. Such ameliorations would directly benefit the ADPI and 
make the IMECCC more attractive. 
The improvement from the IMECCC architecture comes with a cost in area at the CLB level when compared to the 
reference design. Such overhead comes from the staggered row floor plan and the extra logic. We estimated the 
proportional area overhead to remain approximately constant for technology nodes down to 12nm, and more advanced 
nodes may require more customization. However, FPGA area performance is not limited to element size, and the 
utilization ratio plays a significant role. Readback-scrubbing can be performed in many ways, following different 
algorithms and priorities depending on the environment and the implemented design, impacting FPGA utilization. The 
52% increase in element’sareaisestimatedusing32-bitCRAMwordsandcan be reduced by implementing wider CRAMs. 
For example, a 64- bit CRAM word contains six parity bits, while a 32-bit CRAM word needs five of them. Modifying 
the CRAM word width does not only affect the number of parity bits; it also affects the number of CRAM words, the 
required logic for the ECC checkers, and the FPGA pin out. Hence, this sizing has to be considered and efficiently 
handled. Future work may investigate how to serially load FPGA configuration in a self- protected way in order to 
maximize the number of I/Os. 
Another topic of interest is power consumption. Readback- scrubbing consumes significant quantities of dynamic 
power by constantly loading the ECC checker, and this effect is even more pronounced when the FPGA implements 
high- speed scrubbing. IMECCC principally consumes static power 

because the reconfiguration is triggered only by effective SEU/SET. It may be interesting, then, to investigate if 
IMECCC’s benefits extend to power consumption. 
Finally, the IMECCC solution provides many promising characteristics, which can be furtherly assessed in future 
works, on top of its very short TTD. Such improvement increases system reliability for existing applications in exoat- 
mospheric and nuclear environments. Thus, it is   likely that the IMECCC architecture may allow new applications that 
current state-of-the-art components are unsuitable for. 
 

VI. CONCLUSION 
 

This paper presents a built-in solution to detect SEUs in FPGAs’ configuration memory asynchronously
 called IMECCC. It is a new FPGA architecture using SEU sensors built from ECC checkers as an 
alternative to bitstream scrub- bing to quickly and asynchronously detect bit-flip in FPGA CRAM. It extends sensor 
utilization in a sensor network, covering every CRAM word and enabling interruption-based configuration repair to be 
integrated. Such a fabric-based approach has the advantage of allowing existing soft-IP to be implemented without 
spending an undertaking costly and time-consuming development of a dedicated CRAM veri- fication algorithm. This 
detection method demonstrates an improvement between 116,000× and more than 9,700,000× TTD reduction 
compared to the MTTD for read-back scrub- bing. Such significant results are made possible by replacing 
the serial process from the state-of-the-art scrubbing method with the IMECCC sensors, fixing the TTD to 2.16ns. 
Further- more, our solution uses a specific floor plan pattern, which, 
along with the CLB design, shows the capability to reinforce integratedECCcodes.Inthiswork,thethreatofa3-bit MBU 
being undetected by the Hamming code is removed by integrating sensors inside the memory words, increasing the 
spacing of the CRAM cells enough to make a 3-bit MBU extremely unlikely. These improvements are made at the cost 
of a 
1.56× increase in area. Despite the cost in area induced by the sensor integration, the IMECCC solution provides an 
ADPI 
between 78,146× and 3,022,381× compared to state- of-the- art SEU mitigation methods for FPGAs. 
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